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ABSTRACT
Motivation: We introduce simple graphical classification
and prediction tools for tumor status using gene-
expression profiles. They are based on two dimension
estimation techniques sliced average variance estima-
tion (SAVE) and sliced inverse regression (SIR). Both
SAVE and SIR are used to infer on the dimension of the
classification problem and obtain linear combinations of
genes that contain sufficient information to predict class
membership, such as tumor type. Plots of the estimated
directions as well as numerical thresholds estimated
from the plots are used to predict tumor classes in cDNA
microarrays and the performance of the class predictors
is assessed by cross-validation. A microarray simulation
study is carried out to compare the power and predictive
accuracy of the two methods.
Results: The methods are applied to cDNA microarray
data on BRCA1 and BRCA2 mutation carriers as well as
sporadic tumors from Hedenfalk et al. (2001). All samples
are correctly classified.
Contact: ebura@gwu.edu

INTRODUCTION
DNA microarrays belong to a new class of biotechnologies
that allow simultaneous monitoring of expression levels
for thousands of genes. The areas of application include
cell line classification, understanding the effects of thera-
peutic agents, and distinguishing tumor types by identify-
ing genes with differentiated expression levels. Two mi-
croarray construction technologies dominate the field—
oligonucleotide and spotted cDNA microarrays. The sta-
tistical analysis problems are similar for both types.

Microarray data are summarized in an n × k matrix
X = (xi j ). Typically, the genes (k) are the rows and
different individuals or subjects (n) correspond to the
columns so that the microarray equals XT . Contrary to

∗To whom correspondence should be addressed.

traditional statistical set-ups, the number of subjects n is
much smaller than the number of genes k, with k being
in the thousands and n below 100. When samples belong
to known classes, e.g. in our application, tumor tissue of
BRCA1 or BRCA2 germline mutation carriers, the data
also contain a class label or response Y for each subject
in the sample.

Microarray data give rise to two types of problems: class
discovery and class prediction. In class prediction, which
is the focus of this paper, observations are known to be-
long to prespecified classes and the task is to build predic-
tors for assigning new observations to these classes. Stan-
dard statistical analyses include linear discriminant anal-
ysis and diagonal linear discriminant (DLD) classifiers,
classification trees, nearest neighbor (NN) and aggregat-
ing classifiers. A comprehensive account of such methods
and a comparison of their performance is given by Du-
doit et al. (2002). These methods operate on the variable
selection principle as opposed to modeling how classes of
genes function to predict the outcome. In effect, DLD clas-
sifiers ignore correlations and interactions between pre-
dictor variables, i.e. genes. Both correlations and interac-
tions are biologically important and they may have an ef-
fect on the classification, or they may yield an insight into
the predictive structure of the data. NN classifiers, on the
other hand, do take interactions into consideration but in a
‘black-box’ way which does not aid in understanding the
underlying biological process.

The sufficient dimension reduction methods we discuss
in this paper, sliced average variance estimation (SAVE)
and sliced inverse regression (SIR), capitalize on the
correlations among the genes to identify a small number of
linear combinations of a subset of genes that can be used
to predict cancer tumor genotype. They differ from other
approaches in that they do not require the specification of
a model in order to estimate linear combinations of genes
that contain all the regression information. Once the linear
combinations have been identified, they can be used as
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input to any classifier in order to predict class membership
of a new observation. We will focus on graphical displays
of the reduced data to discriminate the different classes
and predict the class status of a sample.

SYSTEMS AND METHODS
Introduction to Dimension Reduction Methods
based on Inverse Regression
A convenient data reduction formulation, that accounts for
the correlation among genes, is to assume there exists a
k × p, p ≤ k, matrix η so that

F(Y |X) = F(Y |ηT X) (1)

where F(·|·) is the conditional distribution function of the
response Y given the second argument. In the microarray
data analysis context, Y could be tumor class or survival
time, and the predictor vector X comprises the different
gene expressions. The statement in (1) implies that the
k × 1 predictor vector X can be replaced by the p ×
1 predictor vector ηT X without loss of information.
That is, ηT X contains equivalent or sufficient, in the
statistical sense, information for the regression of Y
on X. Most importantly, if p < k, then sufficient
reduction in the dimension of the regression is achieved.
The linear subspace S(η) spanned by the columns of
η is a dimension-reduction subspace (Li, 1991) and its
dimension denotes the number of linear combinations of
the components of X needed to model Y . When (1) holds,
then it also holds with η replaced by any basis for S(η).

Clearly, knowledge of the smallest dimension-reduction
subspace would provide the most parsimonious character-
ization of Y given X, as it provides the greatest dimension
reduction in the predictor vector. Let SY |X denote the
unique smallest dimension-reduction subspace, referred
to as the central subspace (Cook, 1996). The dimension
d = dim(SY |X) is called the structural dimension of the
regression of Y on X, and can take on any value in the
{0, 1, . . . , k} set.

The estimation of the central subspace is based on
finding a kernel matrix M so that S(M) ⊂ SY|X.
There have been two main approaches. The first uses
first moment methods such as SIR and variations
(Li, 1991) with M = Cov(E(X|Y)), and polyno-
mial inverse regression (Bura and Cook, 2001a)
with M = E(X|Y). The second approach uses sec-
ond moment methods such as pHd (Li, 1991) with
M = E((Y − E(Y))XXT ), SAVE (Cook and Weisberg,
1991) with M = E(Cov(X) − Cov(X|Y)2, and SIRII (Li,
1991) with M = E(Cov(X|Y)− E(Cov(X|Y)))2. SAVE is
the most inclusive among dimension reduction methods as
it gains information from both the inverse mean function
and the differences of the inverse covariances.

The two conditions needed for all kernel matrices

M to span subspaces of the central dimension reduc-
tion subspace are that E(X|γ T X) be linear, and that
Var(X|γ T X) be constant. Both conditions refer to the
marginal distribution of the predictors and are necessarily
satisfied when X is a normal vector. The conditions
are empirically checked by considering the scatterplot
matrix of the predictors. Linearity of E(X|γ T X) can
be ascertained if the scatterplots look roughly linear or
random, and homogeneity of the variance holds if there
are no pronounced fluctuations in data density in the
scatterplots. In practice, only substantial departures from
both conditions are problematic.

All aforementioned methods can be used to estimate
directions in SY |X. We will present SIR and SAVE in
more detail in the following section, as they are readily
applicable to categorical responses.

IMPLEMENTATION
Without loss of generality one can use standardised
predictors Z = �

−1/2
x (X − E(X)) (assuming that �x =

Var(X) is nonsingular), since SY |X = �
−1/2
x SY |Z so that

the columns of the matrix γ = �
1/2
x η form a basis for the

central subspace SY |Z for the regression of Y on Z.
While both SIR and SAVE can accommodate continu-

ous as well as binary outcomes, our objective is to identify
predictors (genes) that best predict the binary phenotype
Yi of a sample, or equivalently, Pr(Yi = 1) = E(Yi ). Let
µ j = E(Z|Y = j), � j = Var(Z|Y = j), j = 0, 1, de-
note the conditional means and variances, respectively, for
the binary response Y , and ν = µ1 − µ0, � = �1 − �0.
We denote the subspace spanned by the columns of the
two differences, ν and �, by S(ν, �). The main result by
Cook and Lee (1999) states that the SAVE kernel matrix
MS AV E = (ν, �) and hence that SS AV E = S(ν, �) con-
tains some or all the sufficient linear combinations that
can replace the predictor vector Z in the regression of Y
on Z, under the moment conditions stated in the previous
section. Furthermore, when the conditional distribution of
Z|Y is normal, then SS AV E = SY |Z. Cook and Lee (1999)
also showed that MSI R = ν, that is, SSI R = S(ν) ⊂
SS AV E .

In implementing the method, ν and � are replaced by

the corresponding sample moments, ν̂ = �̂
−1/2
x (x̄1 − x̄0)

and �̂ = �̂
−1/2
x (�̂x|1 − �̂x|0)�̂

−1/2
x to yield ŜS AV E =

S(ν̂, �̂), a k × (k + 1) matrix, and ŜS I R = S(ν̂), a
k × 1 vector. The latter has obviously dimension of at
most 1. The test statistic for dimension is given by �d =
n

∑k
l=d+1 λ̂2

l , where λ̂1 ≥ λ̂2 ≥ . . . λ̂k are the singular

values of the estimated kernel matrix M̂S AV E = (ν̂, �̂),
or M̂SI R = ν̂, depending on the method used.

Cook and Lee (1999) showed that the test statistic for
SAVE has an asymptotic weighted chi-squared distribu-
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tion. In the case of microarray data, asymptotic tests may
not be appropriate as the sample size is typically fairly
small. We use a permutation test (see Cook and Yin, 2001)
to estimate the dimension d of SS AV E . The SIR test statis-
tic for dimension has an asymptotic chi-squared distribu-
tion (Li, 1991; Bura and Cook, 2001b). In both cases, the
estimation is carried out by performing a series of tests for
testing H0 : d = m against Ha : d > m, starting at m = 0,
which corresponds to independence of Y and Z.

If the dimension is estimated to be, say, m, then
the eigenvectors b1, . . . , bm , corresponding to the
m largest singular values of ŜS AV E or ŜS I R span a
subspace which estimates SY |Z. Back-transforming to

�
−1/2
x b1, . . . , �

−1/2
x bm yields estimates of m basis

elements of the central subspace SY |X. The resulting pre-

dictors �̂
−1/2
x b1, . . . , �̂

−1/2
x bm are linear combinations

of the original k regressors that contain sufficient infor-
mation to model the response, Y . For binary classification
problems, SIR can estimate at most one basis element of
SY |X.

REMARKS. (a) Even though the discussion so far has
concentrated on binary response regressions, both SIR
and SAVE can be applied to problems with multinomial
or multi-valued responses. (b) When X is normally dis-
tributed, SIR is equivalent to linear discriminant analysis
in the sense that they both estimate the same discriminant
linear combinations of the predictors. Unfortunately, in
binary regression both LDA and SIR estimate at most
one direction in the central dimension reduction subspace
and may miss important relevant information that could
improve the accuracy of classification. Chiaromonte
and Martinelli (2002) were the first to apply SIR on
microarrays. (c) When X is a normal vector, SAVE is
equivalent to Quadratic Discriminant Analysis (Cook and
Yin, 2001). (d) It is not required X be normal for either
SIR or SAVE to yield directions in the central subspace.

Class prediction via minimal sufficient summary
plots and numerical thresholds
Sufficient dimension reduction techniques estimate the di-
mension as well as the directions in the central subspace
without requiring the specification of any underlying para-
metric model. Thus, they constitute a pre-processing tool
for the data that aims to facilitate and guide further anal-
ysis. For the class prediction problem that we consider in
this paper, the directions obtained via any dimension re-
duction method can be subsequently used in a discrimi-
nant function for class prediction. This approach is also
advocated by Flury et al. (1997).

Instead of using a classifier function, we use graphical
displays obtained by both the SIR and SAVE directions
directly to classify samples. To predict class membership,
the class label Y is plotted against the estimated SIR and

SAVE linear combinations η̂
T X, where X is the vector of

gene expressions. As this is a sufficient summary plot,
the classes are expected to be completely separated by
η̂

T X. These plots can be also used to estimate a numerical
threshold that separates the classes. In one-dimensional
problems this threshold will be a single point, in two-
dimensional problems it will be a line, and in general, in
a d-dimensional problem it will be a d − 1-dimensional
separating hyperplane. For example, in the case of SAVE
applied to a 2D problem, the separating line is estimated
by first identifying the best discriminating view of the 3D
plot of Y versus the two SAVE predictors, and projecting
it to a 2D view. The line that has the maximum distance
from both classes is the separating line.

Software
The data analysis was carried out in Arc, a regression anal-
ysis software that includes SAVE, SIR and 3D dynamic
graphics developed by Cook and Weisberg (1999). Arc
can be downloaded freely from http://www.stat.umn.edu/
arc/. The dimension reduction software is also available as
package dr in R from http://cran.r-project.org/.

RESULTS
Simulation study
We compare the performance of SAVE and SIR on
simulated data of structural dimension 2. The data were
generated by adapting the approaches used by Kepler et
al. (2002) and Cook and Lee (1999).

We assumed two classes with labels Y = 0 and Y = 1.
For each class we generated 50 independent samples of
1000 gene expressions (X) as follows: The data X|Y = 0
were simulated from a multivariate normal distribution,
with mean 0 and covariance matrix �. For the Y = 1
group, we selected 1% of the genes to be differentially
expressed. They were generated from a mixture of two
multivariate normal distributions, with means µ1 and µ2,
respectively, and same covariance structure �. The mixing
probability was chosen to be 1/2. The means µ1 and µ2
correspond to the log of the fold changes, or log of the
ratios of expression level between the two groups. The
non-differentially expressed 99% of the X|Y = 1 values
followed the same N (0, �) distribution as the X|Y =
0 genes. Cook and Lee (1999) showed that for the set
of differentially expressed genes, the dimension of the
central subspace equals two. The covariance matrix � =
(σi j ) had a block structure with σi j = 0.2 for | j − i | ≤ 5
and zero otherwise.

Five hundred replications of the experiment were pro-
duced. First, we identified differentially expressed groups
of genes using the standard two-sample t-test at level α =
0.05/(2 × 1000) = 0.000025. We then applied SAVE
and SIR to the differentially expressed genes. SIR was
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Fig. 1. Simulation study: 2D view of the 3D plot of the two SAVE
predictors. The symbol × indicates Y = 1. The axes coordinates are
also given.

of course unable to identify the second dimension. SAVE
had power equal to 1 for identifying the first direction and
0.994 for the second. The level of the test was empirically
estimated as 0.038, slightly smaller than the nominal 0.05.
Ten plots were randomly selected among the 500 in order
to assess the discriminating power of the SIR and SAVE
directions. SAVE was 100% accurate in separating the two
classes. Three of the 10 SIR summary plots did not sepa-
rate the classes successfully. Additionally, the SAVE suf-
ficient summary plots were able to pick up the underlying
structure of the data. Figure 1 shows a 2D view of the 3D
graph of the class response versus the two SAVE direc-
tions. The three data clouds, of which the top two corre-
spond to class label 1, are clearly distinguished and reveal
the mixture structure of the data.

cDNA microarrays on breast cancer
The data consist of 22 cDNA microarrays, each represent-
ing 5361 genes based on biopsy specimens of primary
breast tumors of seven patients with germ-line mutations
of BRCA1, eight patients with germ-line mutations of
BRCA2, and seven with sporadic cases. These data were
first presented and analysed by Hedenfalk et al. (2001). In-
formation on the data can be found in http://www.nejm.org
and http://www.nhgri.nih.gov/DIR/Microarray. The anal-
ysis focuses on identifying groups of genes that can be
used to predict class membership to the two BRCA muta-
tion carrier groups. The problem consists of two parts: the
classification of BRCA1 carriers, and the classification of
BRCA2 carriers. The class label Y (1)

i = 1 if the i th subject
carries a BRCA1 mutation, and it is 0 otherwise. The
BRCA2 mutation carrier class is defined by Y (2) similarly.

Hedenfalk et al. (2001) predict class membership using
a compound covariate predictor, ci = ∑

j t j xi j , where

t j is the t-statistic for the two group comparison of
classes with respect to gene j , xi j is the log-ratio
measured in tumor sample i for gene j , and the sum is
over all differentially expressed genes. The choice of t-
statistics as the coefficients of the genes is reasonable, but
nevertheless, a rather ad-hoc approach.

Hedenfalk et al. first identified differentially expressed
groups of genes using the standard two-sample t-test
at level α = 0.0001. Each sample was then classi-
fied by comparing its compound covariate score of
the differentially expressed genes with a classification
threshold, taken to be the midpoint of the means of
the compound covariates for the two classes. Their
prediction algorithm resulted in one misclassification
for the two BRCA1 groups and four misclassifications
for the two BRCA2 groups. Their classification process
involved leave-one-out cross validation at each step so
that different sets of differentially expressed genes were
identified for each sample. Their sizes varied from 4 to
15 for the BRCA1-mutation-positive, and from 3 to 14
for the BRCA2-mutation-positive groups. The gene list
was made available to us by personal communication. We
cross validated our procedures in the same manner, by
first cross-validating the pre-selection of the genes and,
secondly, the SAVE and SIR classifiers.

We considered all scatterplot matrices of the 44 sets
of predictors for the BRCA1-mutation-positive and the
BRCA2-mutation-positive groups. They all indicated that
both the linearity and the constant variance assumptions
hold. Then, both SIR and SAVE were applied to the
22 different sets of genes for the BRCA1 and BRCA2
groupings. In the case of BRCA1 and for all 22 samples,
SIR identified one significant direction, and SAVE iden-
tified two, except for case 7 for which both estimated the
dimension as 1. We next plotted the binary response Y
versus the SIR direction, and the two SAVE directions
(linear combinations of the gene expressions). In all 22
cases, both SIR and SAVE directions perfectly discrimate
the two classes graphically. SAVE correctly classifies
all 22 samples, and SIR misclassified only specimen 6.
For illustration, the plot of Y versus the SIR direction
with the third sample excluded and subsequently added
is depicted in Figures 2 and 3, respectively. Also for
the third sample, Figures 4 and 5 show 2D views of the
two SAVE predictors where the BRCA1 mutation status
classes are clearly separated with the third observation
excluded and included, respectively. The six genes that
were used as input to SAVE and SIR, for the third obser-
vation, are (their image clone ID is parenthesized): sigma
(258), Peroxisomal acyl-coenzyme A oxidase [human,
liver, mRNA, 3086 nt] (659), CDC28 (809), keratin
(1008)—this gene appeared in most of the 22 gene sets,
ESTs (1859), ESTs (1999), very (2423), minichromosome
(2734).
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Fig. 2. BRCA1 status label versus SIR direction without the third
sample. The symbol × indicates BRCA1 mutation present.
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Fig. 3. BRCA1 status label versus SIR direction with the third
sample. The symbol × indicates BRCA1 mutation present.

For the BRCA2-mutation-positive and BRCA2-
mutation-negative classes, SIR identified one significant
direction, and SAVE identified two, except for case 7
for which both estimated the dimension as 1. Next, the
binary response Y was plotted versus the SIR direction,
and the two SAVE directions (linear combinations of the
gene expressions). In all 22 cases, both SIR and SAVE
directions perfectly discrimate the two classes graphically
and correctly classify all specimens.

Our analysis confirms the results of Hedenfalk et al.
that these sets of genes can be used to predict BRCA1
and BRCA2 mutation status. SAVE estimated the number
of linear combinations of the covariates (genes) needed
for the prediction to be two as opposed to a single
covariate SIR and also Hedenfalk et al. used. The slight
improvement of accuracy of the SAVE class prediction
plot, no misclassifications, over the SIR summary plot,
one misclassification for the two BRCA1 classes, points
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Fig. 4. 2D view of the 3D plot of the two SAVE predictors without
third observation. It has BRCA1 positive (1) status. The symbol ×
indicates BRCA1 mutation present. The axes coordinates are also
given.
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Fig. 5. 2D view of the 3D plot of the two SAVE predictors with
third observation. It has BRCA1 positive (1) status. The symbol ×
indicates BRCA1 mutation present. The axes coordinates are also
given.

to the fact that one linear combination may be inadequate.
Nevertheless, the less complex SIR performed remarkably
well.

We also estimate numerical classification thresholds
from the summary plots. For example, from the SIR
summary plots, zero is estimated to be the separating
point of the two classes for both BRCA1 and BRCA2.
As mentioned previously, for SAVE the separating line is
estimated by projecting the best discriminating view of the
3D plot, Y versus the two SAVE predictors, to a 2D view
using Arc. Arc supports 3D dynamic graphics and also
computes their 2D projections. For the full data set the
separating line was estimated as y = −x + .25.
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In an additional analysis we used the odds from logistic
regression models as a predictor function to predict class
membership for both BRCA1 and BRCA2 classes. We
also analyzed the data as a three class problem—BRCA1,
BRCA2, and sporadic—using the 51 genes that were found
to be differentially expressed in all three groups. Details
on both analyses can be found at http://home.gwu.edu/
∼ebura/publications.html.

In summary, our analysis points to the existence of
multiple subsets of genes that can be used for class
prediction with similar accuracy. While this may at first
seem an unattractive attribute of these data, it is not
surprising, as the number of cases is too small to capture
unique differences in gene expressions. Our finding agrees
with the criticism for the work of Hedenfalk et al. (2001)
expressed in the correspondence section of the article by
Sudbø, Reith and Lindgjærde. Results of applying SAVE
and SIR to a second example on oligonucleotide arrays
on acute leukemia first presented by Golub et al. (1999)
are available at http://home.gwu.edu/∼ebura/publications.
html.

DISCUSSION
We introduced graphical displays based on dimension
reduction methods such as SIR and SAVE, as tools
for classification of tumor tissue using gene expression
profiles. While the methods apply to data that belong to
multiple classes we present the implementation of the two-
class analysis in detail. Two properties of the distribution
of the predictors are required, namely the linearity of
the conditional expectation and constant variance of the
marginal distribution of the predictors. These conditions
are trivially satisfied when the predictors are normally
distributed. The logarithmic transformation of the dye
intensity ratios in cDNAs appears to frequently induce
data that comply with both conditions, for example the
breast cancer data we consider in this paper.

Dimension reduction methods such as SIR and SAVE
estimate both the dimension of the regression of the binary
response on a set of genes and the linear combinations
of the genes that contain sufficient information for class
prediction. Effectively, they reduce the dimension of
the prediction problem so that classifiers with known
statistical properties can be used for the allocation of the
samples to the two classes. In our example, we used a
simple graphical approach to classifying the specimens.

The most appealing and unique feature of this formu-
lation for dimension reduction is that it allows formal
statistical inference on dimension without imposing a
particular model for the functional relationship between Y
and X, as is the case with most other dimension reduction
methods, e.g. additive, generalized additive and projec-
tion pursuit models (Friedman and Stuetzle, 1981; Hastie

and Tibshirani, 1990), partially linear or spline models,
single- and multi-index models (Green and Silverman,
1994). Both SAVE and SIR become increasingly powerful
with increasing sample sizes, allowing for the inclusion of
more genes in the dimension reduction phase. However,
the only limitation to the number of genes used in the
analysis is numerical instability induced by having to
invert the sample covariance matrix �x . As an alternative
to using t-tests to preselect genes, one could also use a
generalized inverse which corresponds to replacing the
original X vector with its principal components.

Among the two methods, SAVE is the most comprehen-
sive as it captures a larger section of the central subspace
(Cook and Critchley, 2000), without any restrictions in the
dimension it can estimate. It should be noted though that,
in particular when the sample size is very small, SIR may
have a computational advantage over SAVE as it requires
the estimation only of the inverse mean vector.
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